
rAD-Mi2i44 HMDA2 494 THE ROSS LANGUAGE NRNUAML(U) RND CORPOIT S OIAC
MSCARTHUR ET AL. SEP 82 RRND/N-i854-AF

F49620-82-C-fl~iS

UNCLASSIFIED F/G 9/2 N

MENOMONEE NI
EhhhhhhhhhhhE
EhhhhhhhhhhhI
mhhhhhhhhhhhI
folffff -D

.. mg - LIIIIIl 1L6

*1 25 E1[4 _

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURCEAU Of STANOAROS- 63 - A

~PAZ

PM-11

"V; -V Vv-

pw k4

t CLO

The research repOtted here was sponsored by the Directorate of Operational

Requirements, Deputy Chief of Staff/Research, Development, and Acquisi-
tion, Hq USAF, under Contract F49620-82-C-0018. The United States
Government is authorized to reproduce and distribute reprints for govern-

mental purposes notwithstanding any copyright notation hereon.

The Rand Publications Series: The Report is the principal publication doc-

umenting and transmitting Rand's major research findings and final research
results. The Rand Note reports other outputs of sponsored research for
general distribution. Publications of The Rand Corporation do not neces-
sarily reflect the opinions or policies of the sponsors of Rand research.

Published by The Rand Corporation

A RAND NOTE

THE ROSS LANGUAGE MANUAL

David McArthur and Philip Klahr

September 1982

N-1854-AF

Prepared for The United States Air Force

R an dAPPROVED FOR MKUC ELIAII, DISMUUMUI E
SANTA MONICA, CA. 9OWO

•UFMATV CL.ASSFICATION OP ',--tliPAGI (BOh Dum e __e_ .,__,,_,

REP D W UMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORMI1. REPORT NUMBER a2. GoVT ACCESSION NO :. RECIPIENTIS CATALOG NUMBER

4. T|TLA (*-d Subtile TYPE OF REPORT & PERIOD COVERE

THE ROSS LANGUAGE MANUAL interim

6. PERFORMING ORG. REPORT NUMOER

7. AUTHOR(e) O. CONTRACT OR GRAN? NUNGER(@)
David McArthur and Philip Klahr F49620-82-C-0018

It. PERFORMING ORGANIZATION NAM AND AOD1SS %Q. PROGRAM EL.EMENT, PROJECT. TASK
The Rand Corporation AREA & WORK UNIT NUMBERS

1700 Main Street
Santa Monica, CA 90406

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Requirements, Programs and Studies Group(AF/RDQM) September 1982
Office, DSC/R&D and Acquisition Is. NUMER OF PAGES
Hq USAF, Washington, D.C. 20330 50

14. MONITORING AGENCY NAME ADORISSif dEIemt fram Conroll ng Offlow) IS. SECURITY CLASS. (of this -O90f)

Unclassified
lIe. OECLASSI FICAT ON/DOWN GRAOING

SCNEOULE U
II. DISNRISUTION STATEMENT (of thi Report)

Approved for Public Release; Distribution Unlimited

I

17. DISTRISUTION STATEMENT (of te .A0e1rst entered in Block It6, Ifffeli hnow Relorw)

IS. SUPPLEMENTARY NOTES

I$. KEY WORDS (Continue an reverse side if necoase , and Identity by block numin.)

Programming Languages
ROSS (Programing Language)
Computerized Simulation
Warfare

R0. ABSTRACT (Contaw. on reverse side if necesary od Idenlfy by beek munbor)

see reverse side

L|
-

DoI PjA1 I 1473 EDITION OPP I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION Olt THIS PAGE (When Data Entered)-' w w w w

UIRITV CLAWPICATION OF TH4S PAGCAIth Da Msremd)

This Note summarizes the commands of the
ROSS lanquaqe. ROSS is an object-oriented
proqramminq lanquaqe currently beinq
developed at Rand. The qoal of ROSS is to
provide a proqramminq environment in which
users can conveniently design, test and
change large knowledqe-based simulations of
complex mechanisms. Obiect-oriented
proqramminq languages, and ROSS in
particular, enforce a bmessaqe-passinq#
style of proqramminq in which the system to
be modeled is represented as a set of
actors and their behaviors (rules for actor
interaction). This style is especially
suited to simulation, since the mechanism
or rrocess to be simulated may have a
part-whole decomposition that maps
naturally onto actors. The first section
of this Note gives an overall view of the
language and the philosophy behind
object-oriented programming. The next
eleven sections give detailed descriptions
of the basic commands or behaviors of the
lanquaqe. The final two sections give r
advice cn how to write Enqlish-like code in
RCSS and how to optimize code, once
iebuqqed. " -

-1

II

4 -

SECURITY CLASSIPICATION OF Vt4iS PAGLMf1'" DOW aRtefO-)

w ww V U

ROSS - iii -

PREFACE

This Note is primarily a manual of commands comprising the ROSS
language, as of May 1982. ROSS is an object-oriented programming language
developed at Rand for constructing simulations. It represents a newapproach to simulation languages, employing concepts from Artificial
Intelligence (AI). The ROSS development is part of a Project AIR FORCE
study entitled "Computer Technology for Real-Time Battle Simulation,"
which is developing new methods to significantly improve military
simulations. The ROSS language, in particular, aims to make it easier for
users to build, modify, and better understand battle simulations.

This Note is a limited user's manual in the sense that it does not
attempt to convey appropriate applications of the ROSS simulation language.
(The reader who is interested in a ROSS application is referred to Rand

*: Note N-1885-AF, which describes an air battle simulation called SWIRL.) With
the exception of the examples in several sections, this current document is
mainly a catalog of commands. Experienced users should find this catalog
an adequate reference; novice users who are unsure of the design
philosophy behind object-oriented programming, or, more specifically, what
constitutes good programming style in ROSS, are encouraged to first skim
Sections 1 (overview and basic concepts) and 13 (how to write English-like
code in ROSS). Details of specific commands can then be accessed on an
as-needed basis.

Occasionally changes are made to the ROSS language. Changes after May
1982 (if any) will be. documented in ross.news releases in <ross.news>.
This manual reflects changes up to and including those mentioned in
ross.newslO.

ROSS v

SUMMARY

This Note summarizes the commands of the ROSS language. POSS is an
: object-oriented programming language currently being developed at Rand.

The goal of ROSS is to provide a programming environment in which users can
conveniently design, test and change large knowledge-based simulations of
complex mechanisms.

Object-oriented programming languages, and ROSS in particular, enforce
a "message-passing" style of programming in which the system to be modeled
is represented as a set of actors and their behaviors (rules for actor
interaction). This style is especially suited to simulation, since the
mechanism or process to be simulated may have a part-whole decomposition
that maps naturally onto actors. Furthermore, the real-world interactions
between parts may be easily modeled by actor behaviors and actor
message-transmissions.

The first section of this Note gives an overall view of the language

and the philosophy behind object-oriented programming. The next eleven
sections give detailed descriptions of the basic commands or behaviors of
the language. The final two sections give advice on how to write
English-like code in ROSS and how to optimize code, once debugged.

Accession For

W1'TS GRA&I
T-' :. TAB

u- ',r-ounced
J. tif ication

Distribution/

Availablity Codgs

Av -L and/or
,r, , I p e a

.

ROSS - vii-

ACKNOWLEDGMENTS

ROSS counts SMALLTALK and especially DIRECTOR as its ancestors. Its
design has also benefited from the more personal contributions of other
members of the Rand ROSS group, including Sanjai Narain, Henry Sowizral,
Sally Goldin, and Eric Best. Jill Fain, Ross Quinlan, and Jan van den
Driessche also provided useful suggestions.

ROSS -ix-

TABLE OF CONTENTS

PREFACE...ii

SUMMARY v

ACKNOWLEDGMENTS .. vii

1. Overview and basic concepts 1
1.1. Actor properties and the tangled hierarchy of objects 2
1.2. Defining the behaviors of objects 3
1.3. How behaviors get invoked by matching passed messages 4
1.4. Powerful behaviors match classes of messages 4
1.5. Behaviors, like properties, can be inherited 5
1.6. Predefined actors and reserved words in ROSS 8
1.7. Two examples .. 8

1.7.1. Automated secretary 10
1.7.2. Queueing system 11

1.8. Using the manual .. 14

2. Creating actors ... 15
2.1. Creating actors to represent new subclasses 15

CREATE GENERIC <obj> WITH <specs> 15
CREATE NEW GENERIC <obj> WITH <specs> 16

2.2 Creating instances .. 16
CREATE INSTANCE <obj> WITH <specs> 16
CREATE NEW INSTANCE <obj> WITH <specs> 17

2.3. Tailoring the interactive creation of objects 17
2.4. Creating actors by analogy 18

DUPLICATE YOURSELF AS <newobj> 18
MAKE <object> LIKE <example> EXCEPT <quals> 18

2.5. Some other commands 19
MAKE <obj> WITH <specs> 19
REMAKE <obj> WITH <specs> 20

2.6. Killing objects ... 20
KILL YOURSELF .. 20

3. Manipulating the behavior of actors 21
WHEN RECEIVING <msg-template> <actions> 21
RECALL BEHAVIOR MATCHING <message> 22
FORGET BEHAVIOR MATCHING <message> 22
KILL BEHAVIORS MATCHING <message> 23

4. Manipulating the attributes of actors 24
4.1. Setting and fetching attribute values 24

SET YOUR <slot> TO <value> 24
RECALL YOUR <slot> 24
FORGET YOUR <slot> 24

4.2. Changing attribute values 25
INCREMENT YOUR <slot> BY <n> 25
DECREMENT YOUR <slot> BY <n> 25

4.3. Adding to and selectively deleting from attribute values .. 25
ADD <value> TO YOUR LIST OF <slot> 26
REMOVE <value> FROM YOUR LIST OF <slot> 26

i~A

ROSS x

5. Manipulating the memory of actors 27
REMEMBER <fact> .. 27
COLLECT ITEMS MATCHING <pattern> 27
RECALL IF ANY ITEMS MATCH <pattern> 28
FORGET ITEM MATCHING <pattern> 28

6. Manipulating the plans of actors 29
PLAN AFTER <n> SECONDS <action> 29
UNPLAN <action> .. 29
UNPLAN ALL <action> 30

7. Broadcasting messages to actors 31
ASK EACH OF YOUR <slot> TO <action> 31
ASK YOUR <slot> TO <action> 31
ASK <obj> TO <action> 32

8. Making actors print themselves 33
PRINT YOURSELF IN DETAIL 33
PRINT YOUR <type> 33
SHOW YOUR <attribute> 34

9, Making actors act: the clock 35
(ASK NCLOCK TICK) 35
(ASK NCI CK TICK <n> TIMES) 35

10. Making actors trace themselves and report errors 36
10.1. The trace facility .. 36

TRACE YOUR BEHAVIOR MATCHING <msg-pattern> 36
UNTRACE YOUR BEHAVIOR MATCHING <msg-pattern> 37

10.1.1. Constraints on tracing 37
10.1.2. Tracing without inheritance 37

TRACE EACH OF YOUR BEHAVIORS MATCHING <msg-pattern> 37
UNTRACE EACH OF YOUR BEHAVIORS MATCHING <msg-pattern> .. 38
TRACE EVERYTHING 38
UNTRACE EVERYTHING 38

10.1.3. How to start tracing 38
10.2. Error messages ... 38

11. Editing actors .. 40
EDIT YOUR BEHAVIOR MATCHING <pattern> 40

11.1. Editing Requirements 40

12. Flow of control ... 42
12.1. Conditionals .. 42
12.2. Iteration ... 43

13. How to write English-like code in ROSS 44
13.1. The abbreviation package 45

14. How to make ROSS code run faster 47
14.1. When to compile behaviors 47
14.2. How to compile behaviors 47

15. References .. 50

ROSS -1-

Overview and basic concepts

1. Overview and basic concepts

ROSS is an object-oriented programming language implemented in
MACLISP. The hallmark of ROSS and other object-oriented programming
languages such as SMALLTALK (Goldberg and Kay, 1976; Ingalls, 1976),
PLASMA (Hewitt, 1976), and DIRECTOR (Kahn, 1976) is that all processing is
in terms of message passing among a coilection of actors or objects.*
Object-oriented languages, in particular ROSS, are useful for modeling and
understaading dynamic real-world systems whose complexity make more
analytic (mathematical) tools inappropriate.

In many cases one would like to understand a complex dynamic system
without experimenting with it in the real world. First, one might be
interested in alternative designs and not want to incur the cost of
building real prototypes to find the best one. One would therefore like
faithful simulations that would inexpensively reveal behavioral properties.
Second, it would be far better to test certain systems hypothetically for
possible outcomes that would be too disastrous to permit to happen in real
life. For example, one would like to infer the behavioral properties of a
faulty nuclear reactor, not experience them.

In many such dynamic systems several component objects have distinct
properties and behave in predictable ways to given inputs. For example, a
car engine includes a carburetor, transmission, etc.; and each responds in
a characteristic fashion to input forces or substances. The difficulty in
predicting the behavior of these systems stems not from an inability to
specify the behaviors of the components in isolation, but from their
complex interactions. In particular, it is difficult to understand the
long chains of cause and effect that can obtain. That is, in a system of
interacting parts, the local action of a single component usually has
direct and indirect effects, and although short-term effects of a given
component's action are easily seen, the more distant indirect effects,
which are often crucial to understanding the system as a whole, are much
more difficult to see. The ROSS language provides tools for making these
important subtle effects comprehensible.

In ROSS, one understands such systems by creating actors that
represent the modular components, and defining behaviors for those actors
to describe how the actors (components) will respond to each of the kinds
of possible inputs. The inputs and outputs that define a behavior for each
actor are themselves represented as messages, which are passed from actor
to actor. Message passing provides the basis for understanding complex
interactions between objects. When the programmer defines an actor's
behavior, he need be concerned only with how the corresponding objects
directly react to proximal inputs. When the program runs, however, complex
and unforeseen distant effects of a local piece of behavior can be revealed
because each local message transmitted can trigger others, and these in
turn can trigger still others. Thus, a ROSS program can easily model the
arbitrary propagation of effects that characterize complex systems. The
utility of having such a program is that the path of messages corresponding

* In this manual we shall use the terms "actor" and "object"

interchangeably.

ROSS -2-
Overview and basic concepts

to the "causal chain" is an explicit structure that can be examined,
traced, and quantified. Direct and indirect effects are equally visible.

1.1. Actor properties and the tangled hierarchy of objects

Actors can be thought of as small computers. Like closures, they
combine aspects of data structures and procedures. Specifically, each
actor has a set of properties (attributes or variables) that have values.
For example, we might have an actor called Eunice who looks like this:

[Eunice:
profession dentist
age 39
parents (woman adult professional)].

These attribute value pairs are acted on much like ordinary LISP property
lists. The only odd attribute here is PARENTS. You might have expected to
see something like (Ernestine and Ernie) here; but, in fact, PARENT (along
with a few others) is a special actor property that points to
superordinates of a given actor. The superordinates of a given actor are
also actors; however, they do not denote single entities.

Actors thus come in two distinct types: instance-actors like Eunice,
representing individuals, and generic or class objects that represent sets
of individuals. Above, Woman is one such class object. Woman might look
like:

[Woman:
sex female
parents (person)].

Note here that Woman also has parents. In general, this linking of actors
can have many levels so that actors form a complex hierarchy of objects.
Moreover, since a given actor can have several parents (i.e., can be a
member of several classes), the hierarchy connecting objects is tangled --

it is not arranged as a strict tree.

The intended semantics of instance-actors and generics should be
obvious from the examples. Generally, actors denote real-world objects, or

sets, while their properties denote features, parts, or behaviors of those
objects. From this follows the intended interpretations of the PARENT
linkage: the "subset" relation ("Woman" has "Person" as a PARENT, and
women constitute a subset of persons), or the "set-membership" relation
("Eunice" has "Woman" as a PARENT, and Eunice is member of the set of
women).

The tangled hierarchy of relations induced by the PARENT relation on
actors is critical to object-oriented programming in general, and ROSS in
particular. Most important, it provides the basis for inheritance
searches. An actor is said to inherit the properties of its PARENT objects
in the operational sense that, if a given attribute's value is explicitly
stored with a PARENT of the actor (but not with the actor itself), then
that value will be retrieved when the actor is requested to recall its

4

ROSS -3-
Overview and basic concepts

value for the attribute. Above, for example, if Eunice was asked to recall
her sex, she would return "female"; it is one of her implicit attributes.
Although it is not stored explicitly with Eunice, it is stored explicitly
with one of her ancestors.

Inheritance searches also have a natural semantic interpretation,
which justifies them as valid inferential techniques. Generally speaking,
the attributes associated with an instance-actor denote properties or
assertions that are true of the represented real-world object. However,
the attributes associated with generic actors usually denote properties
that are true of typical instances of that set, not assertions that are
true of the set as a whole. Hence, when an actor is requested to recall
one of its attributes (give the true value for that property), it is valid
for him to infer that whatever is true for its ancestors on that attribute
must be true for him and to use this justified technique in responding to
the request. Of course, it would be possible to require in ROSS that all
assertions true of an actor be represented with the actor, but this entails
vast amounts of extra storage. Inheritance searches are simple inferential
techniques that eliminate the need for excessive space.

1.2. Defining the behaviors of objects

ROSS objects are more than just data structures. They include
behaviors as well, and these, like attributes, can be inherited from
superclass objects. More specifically, a behavior of an object comprises
the set of actions it executes when receiving a message. As an example,
suppose Eunice will always meet with Mary, her stockbroker, whenever Mary
requests it; and Eunice always prefers her meetings with Mary to be for
lunch. This behavior for Eunice might look, schematically, like this:

(ask Eunice when receiving (Mary requests meeting)
(tell Mary meet for lunch at Superfood)
(tell Eunice bring stock reports)
(tell Secretary cancel other lunch appointments)).

This is an actual piece of ROSS code, and requires some explanation. The
whole form is a ROSS command. ROSS commands always have the syntax:

(<rword> <object> <message>)
where o <rword> is one of {tell, ask)

o <object> is an actor
o <message> denotes the message being sent to that

actor.

In general, a ROSS command directs a message at some object or actor.
The top-level message being directed here is a "when receiving" message.
It defines a behavior for Eunice, telling the given actor how to respond
when a particular message pattern is sent to her. In more detail, it says
that when Eunice is told that "(Mary requests meeting)", Eunice should act
by issuing three subsequent messages, one to Mary, one to herself, and one
to her secretary. Presumably the actors have behaviors that allow them to
respond to each of these three messages. (These too must have been
generated using "when receiving" messages.)

*1

- --------- h- - - -

ROSS -4-
Overview and basic concepts

1.3. How behaviors get invoked by matching passed messages

Now when Eunice actually receives the message (Mary requests meeting)
she will respond as expected. Note how in this case her response involves
sending out other messages, and they in turn may cause further messages to
be relayed. In general, there is no limit on the extent to which the
effects of a single message can propagate. This is simply determined by
the nature of the behaviors defined for the actors present in a given ROSS
environment. Much of the power of object-oriented programming stems from
the fact that arbitrarily complex message propagation can result even
though actors and their behavioral responses to messages can be defined
quite simply and modularly.

The mechanics of how specific messages sent to an object trigger the
appropriate actions deserve mention. Each time a "when receiving" message
is sent to an object to define a new behavior for it, the pattern of the
message (e.g., (Mary requests meeting)) and its associated actions are
merged into a list of all that object's behaviors, which resides as the
value of its FUNCTIONS attribute. Structurally, there is nothing to
separate ordinary object properties from behaviors. Now, when a message is
sent to that object it pattern matches the incoming message against the
patterns of each of its pattern-action pairs. The first match causes the
associated actions to be evaluated, and the process completes.

1.4. Powerful behaviors match classes of messages

Often you would like the behaviors you stipulate for an object to
match a class of incoming messages, not just one. Overly specific
behaviors are not as useful as ones that are appropriate on a wide variety
of occasions. For example, "recall your" is a basic kind of ROSS message
that is used to retrieve the values of an actor's properties. To take one
instance, the message

(ask Bill recall your age)

might return "39". Now one would like a single behavior to be responsible
for fielding all such messages. It would be bad to require separate
behaviors for (recall your age) (recall your parents) etc. We would like
one behavior to match and process all messages of the form (recall your
<any-property>). This is accomplished by putting pattern variables in the
appropriate places of the message pattern when defining a new behavior.

For example, if Eunice would readily meet with any stockbroker, we
might have defined her behavior as:

(ask Eunice when receiving (>someone requests meeting)
(if (equal 'stockbroker (ask !someone recall your occupation))
then (tell ?someone meet for lunch at Superfood)

(tell Eunice bring stock reports)
(tell Secretary cancel other lunch appointments))).

I

ROSS -5
Overview and basic concepts

In the pattern of this definition "someone" is a pattern variable. This is
signified by the ">" prefix. When the pattern matcher is trying to match
an incoming message with actor behaviors, it lets the variable following
">" match any atom; that is, any object name such as "Mary", "George", or
"Sue". In addition, the value of that atom is set to the corresponding
constant in the incoming message. For example "someone" would be set to
Mary if the message were (Mary requests meeting). By setting the pattern
variable in this fashion, it can be referenced in the body of the behavior.
Here, for example, the variable is used in the first action of the behavior
to confirm a luncheon meeting.

Note that appearances of the pattern variable in the body of a
behavior must be prefixed also (here by ""). This is because ROSS is a
non-evaluating dialect of LISP: To get to values of variables you have to
make explicit calls to EVAL. "" is a macro that accomplishes the
evaluation of the following atom, so if "someone" was Mary, evaluation of
the first action body would yield (ask Mary meet for lunch at Superfood).
Several other prefixes commonly used when writing ROSS code, either to
control evaluation or to dictate variables in pattern matching, are
summarized in Table 1.

A final thing to note about this example is the free mixing of ROSS
commands (beginning with "ask" or "tell") with LISP function calls (like"equal"). In general, there are no constraints on the ability to drop into

LISP from ROSS; in fact, this is necessary in some situations. For
example, ROSS currently has no control mechanisms (see Section 12).
Although the prefixes of Table 1 are needed to force expression evaluation
in the context of ROSS commands, they are not needed in the context of LISP
forms. ROSS does not change the nature of LISP evaluation.

1.5. Behaviors, like properties, can be inherited

One of the most important ideas in object-oriented programming is that
behaviors as well as static object properties can be inherited.
Semantically this makes sense. Behaviors of objects are properties that
characterize them just as do more static features, and actors representing
generics store behaviors that are "true of" (applicable to) typical
instances of their classes. Assume, for example, that the object "adult"
is a subset of the object "person" and that adults tend to lie about their
ages. We could implement this by associating the following behavior with
the class-object "adult":

(ask adult when receiving (report your age)
(difference (ask !myself recall your age) 5)).

ROSS -6-
Overview and basic concepts

Table 1
ROSS SPECIAL CHARACTERS

SYMBOL MEANING EXAMPLE

> Pattern matching symbol. with pattern
' When part of a pattern, will (press the >thing)
IImatch a single word (atom) and datum

at corresponding part of (press the button)
IIdatum. "thing" matches and is
I Iset to "button"

+ Pattern matching symbol. with pattern
When part of a pattern, will (press the +thing)
match a segment if words and datum
at corresponding part of (press the left button)I
datum. "thing" matches and is

set to "(left button)"

Evaluation symbol. with ROSS command
When prefixing a form in a (ask !p kiss !person)
ROSS command, causes the form I with value(p)=Ross
to be evaluated, and the valuel and value(person)=Rosie
to be substituted into the J results in ROSS command:
ROSS command. (ask Ross kiss Rosie)

& Evaluation symbol. with ROSS command
When prefixing a form in a I(ask !p kick &person)
ROSS command, causes the form I with value(p)=Ross, and
to be evaluated, and the valuel value(person)=(big Rosie)
(necessarily a list) to be I results in ROSS command:

-jspliced into the command. j(ask Ross kick big Rosie)

The most important thing to note about this behavior definition is
that, although it is explicitly associated with the generic object "adult",
the actors that are most likely to want to use it are individual adults --
the offspring of the object to which the behavior is attached. In
particular, Eunice or Bill, viewed as adults, should respond in the above
fashion to this kind of message. In ROSS, this is accomplished by
inheritance of behaviors. That is, when an object receives a message it
first checks its own behaviors to see if it can determine a response; if

* not, it will similarly search the behaviors of its parents, and then its
a more remote ancestors, until a matching behavior is found. In short, the

inheritance of behaviors exactly parallels the inheritance of static actor
properties.

Ia

ROSS -7-
Overview and basic concepts

One other important thing to note about this definition is the use of
the word "myself". "Myself" is a ROSS reserved word that is always set to
the name of the actor who has just been sent the message. If we send a
message to Bill like:

(tell Bill report your age)

then, when Bill executes the above behavior in response, "myself" will be
set to Bill, even though the behavior resides with the actor "adult".

Inheritance of behaviors is a powerful mechanism and, like variable
patterns in messages, increases the flexibility of behavior specification.
Individual objects often form a class (such as adult or professional)
because of the kinds of behaviors they share. In ROSS, this means that
they should respond the same way to similar messages. Therefore, it is
inefficient and inelegant to associate the same behavior explicitly with
each member of the set (say, each of 100,000 adults). Instead, it is much
more effective to exploit ROSS's implicit inheritance search and attach the
behavior to the generic actor that represents the largest set of
individuals sharing the behavior. Of course, you do not want to associate
behaviors with actors at too high a level of abstraction. For example, it
would be wrong to associate the above behavior with "person", because some
members of this class (e.g., children) will have distinctly different
reactions to the same message. For example, if we wanted to have a
behavior associated with this message for "children", presumably it would
be something like:

(tell children when receiving (report your age)
(recall your age))

Generally, children say their age is the value they really believe it to
be. Of course, not all adults lie about their age either, and it is easy
to make exceptions to this behavioral generalization for well-defined
subclasses of the class. For example, we could create a subclass of adults
called "mature-adults" and say:

(tell mature-adult when receiving (report your age)

(recall your age))

thus freeing certain liberated adults of social pressure to seem younger

than they are.

Because objects may have several parents, ROSS allows multiple
inheritance of behaviors. For example, Eunice may inherit behaviors from

* woman, professional, and adult. Normally multiple inheritance is a very
powerful technique that allows objects to be viewed (behave) in several
different ways. However, one must take care to avoid inheritance
conflicts. These arise when more than one of the parents of an object have
behaviors with the same message template. The question is which one of
these behaviors will actually field incoming messages. There are many
conventions one could adopt to resolve such conflicts. However, we
currently adopt none. This means that the user has no way of knowing which
conflicting behavior will be used and should therefore carefully avoid
using message templates that will produce such conflicts.

-• . '- • - - - . "

LI

ROSS -8-
Overview and basic concepts

With two important exceptions, behavior specifications in ROSS are
quite similar to function definitions in standard procedural programming
languages. First, in ROSS, "functions" are not free-floating but are
indexed by object, and through inheritance are indexed by classes of
objects. It is quite possible, as the above examples illustrate, to have
several "functions" with the name (message pattern) that all yield very
different results. There is no risk of ambiguity in this because objects
provide a context in which globally ambiguous messages can be rendered
locally unequivocal. Second, ROSS "functions" do not get passed a fixed
number of arguments. The argument list to a ROSS behavior is in fact a
pattern that gets matched to the incoming message. Because pattern
matching is much more intelligent than the simple variable binding that
goes on in normal procedure calls, users enjoy a much freer syntax for
"calling functions". In particular, heavy use can be made ot keywords (the
non-variable pattern of a message pattern), giving ROSS code readability
approximating English.

1.6. Predefined actors and reserved words in ROSS

ROSS users should be aware of a few conventions before they begin
writing code, to save themselves some grief. In particular, the ROSS
language reserves certain words for its own use. Users should be aware of
these not only to avoid clobbering important parts of the system, but to
fully exploit the power of ROSS. Table 2 explains the ROSS keywords. The
table includes (i) actors that already exist in the initial ROSS
environment, (ii) properties of actors that have special meaning to ROSS
and that are not inherited in the same fashion that typical, user-defined
properties would be, and (iii) special ROSS command words.

1.7. Two examples

We conclude this section with two example ROSS sessions. The first
example is quite easy, while the second is more advanced. We encourage
first-time ROSS users to experiment with the first example, by typing it
into ROSS and seeing its responses and operation.

As will be obvious from the examples, the ROSS user must be somewhat
familiar with LISP. A user who has written at least a few LISP programs
should be able to use the simpler ROSS commands. LISP always evaluates an
expression unless it is quoted. In the ROSS "ask" and "tell" commands,
expressions are not evaluated unless they are prefixed with "I" This
should become clear in the examples presented.

4

ROSS -9
Overview and basic concepts

Table 2
RESERVED WORDS AND SPECIAL ACTORS

WORD TYPE COMMENTS

something actor Top-most, most generic of all actors.
ISomething is the actor you use to

create your actors from scratch. It
also stores all ROSS primitive
behaviors.

nclock actor The simulation clock, which exists in
the initial ROSS environment. You
make simulation time step forward by
asking it to tick.

ross-error actor Pre-existing actors that handle errors
ross-trace " and diagnostic duties.

I functions I propertyl The "functions" property of each actor
sto-es behaviors directly associated
with it. This property is inheritable.1

I things-to- I propertyl The "things-to-remember" property of
remember each actor stores its facts. Facts arel

not inheritable.

I"things-to-do I propertyl The "things-to-do" property of each
IIactor stores its scheduled plans. PlansI

are not inheritable.

object-type I propertyl This property of an object identifies
it as "generic" or "instance".

I parents I propertyl These properties encode the heritage
offspring " of the associated object. Ancestors

I ancestors " comprise the closure of parents of an
I descendants " object; descendants are the closure of
generics " offspring; generics are the nonterminall
instances " descendants of an object; instances

are its terminal descendants.

ask command The words that introduce every ROSS
tell " command, and which should be followed

I Iby the name of the actor to which
I Ithe subsequent message should be

directed. Currently "ask" and "tell"
are interchangeable.

_ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _

ROSS -10-
Overview and basic concepts

*i 1.7.1. Automated secretary

@ross [ROSS is invoked by simply calling it; the
user can expect to see some herald info,
then ROSS is listening.]

(ask something create generic secretary)

[The top node "something" is asked to create
a new class.]

(ask secretary create instance rick)

[Create a particular instance of the class.]

(ask secretary when receiving (schedule >day +activity)
(ask !myself add !activity to your list of !day))

(A behavior is defined for all secretaries,
including rick. The secretary will have
various "day" attributes whose values will
be the scheduled activities for that day.]

* (tell rick schedule MAY10 lunch with president)

(Schedule activity for May 10.]

(ask rick print your attributes)

[Print rick's current attributes.]

(tell rick add APRIL9 to your list of days-out-of-town)

[Create another attribute for rick.]

.- (ask secretary when receiving (schedule >day +activity)
(if (member day (ask !myself recall your days-out-of-town))
then (type "You will be out of town" day)
else (ask tmyself add lactivity to your list of !day)))

[Redefine "schedule" behavior for secretaries
to first examine if I will be out of town the
day the scheduled activity would occur. Note
that "member" and "type" are LISP functions.]

(tell rick schedule APRIL9 meeting with client)

[April 9 is an out-of-town day.]

(ask secretary when receiving (out of town >day)
(type "You have these events already scheduled for" day)
(ask !myself show your Iday))

[Define behavior: for new out-of-town days, tell

ROSS -11Overview and basic concepts

me what I had scheduled for those days.]

(tell rick out of town MAY10)

[Test the behavior.]

1.7.2. Queueing system

All detail has been omitted. The goal of this example is not to
exhibit specific ROSS commands, but to give a general impression of how the
user interacts with ROSS and to point to various sections that document the
commands and techniques exemplified here.

@ross

(lload-actors 'qsim) [This is the correct way to load interpreted
actor and behavior definitions from a file.
It allows them to be noticed for editing
(see Section 11) and compilation (Section 13).
The file qsim contains code for a queueing
simulation.]

(ask washer edit your [The user wants to alter an existing behavior
behavior matching definition matching (update +). This invokes
(upd'ate +)) EMACS (Section 11).]

<user alters behavior>

[Still within EMACS, the user creates new objects and behaviors.]

(ask washer create generic cheap-washer
with cost 5 wash-time 10 car-types (small))

[There are two classes of washer: one cheap (slow and handles
4 only small cars); the other expensive (fast and handles any

car). These creation commands are discussed in Section 2.]

(ask washer create generic expensive-washer
with cost 8 wash-time 4 car-types (small big))

[Now user needs to create new washer behaviors. Each washer needs
to be able to (i) say if it is empty; (ii) if it is not empty, to
process its car by decrementing its time-till-empty; (iii) change
itself from an unoccupied to an occupied state. In addition, washer
generics (washer, cheap-washer, and expensive-washer) need to be
able to create instances of themselves. Numbered comments
concerning code are explained below.]

(ask washer when receiving (create >n instances) [i]
(loop for i from n

4 ROSS 12-
Overview and basic concepts

append (ask !myself make !(make-symbol))))

(ask washer when receiving (are you empty?) [2]
((-your time-till-empty) 0))

(ask washer when receiving (update your occupied status)
(if (not (= 0 (-your time-till-empty)))
then (-you decrement your time-till-empty by 1)))

(ask washer when receiving (set your occupied status)
(-you set your time-till-empty to

!(-your wash-time)))

[1] Here user creates a simple behavior for making an
arbitrary number of objects of a given type. This
method is general enough that it might have been
attached to "something". This example demonstrates
the use of the loop macro (Section 12).

[2] Here the use of "-your" is an abbreviation for the
more verbose and stylistically awkward "(ask !myself
recall your ...)". The use of abbreviations to make

ccie more English-like represents good practice in ROSS.
More on this in Section 13.

[Once the user is satisfied with his changes in EMACS, he returns
them to the ROSS environment as described in Section 11.]

[Now the user begins to debug some of his existing code. He first
traces all the behaviors for the three main simulation actors
-- washer, chief and queue. Then he lets the simulation go for 3
ticks. The trace facility is discussed in more detail in Section
10. Numbered comments concerning output are explained below.]

(ask washer trace everything)
NIL
(ask chief trace everything)
NIL
(ask queue trace everything)
NIL
(ask simulator go 3)

Number of fast washers for all cars? 1
Number of fast washers for big cars? I
Number of fast washers for small cars? 1
Number of slow washers for big cars? 1
Number of slow washers for small cars? 1
Frequency of cars? 5

W0037 <== (UPDATE YOUR OCCUPIED STATUS) [Il
W0037 [(UPDATE YOUR OCCUPIED STATUS)] => T
W0036 <=- (UPDATE YOUR OCCUPIED STATUS)
W0036 [(UPDATE YOUR OCCUPIED STATUS) I => T
W0035 <= (UPDATE YOUR OCCUPIED STATUS)

ROSS - 13 -

Overview and basic concepts

W0035 [(UPDATE YOUR OCCUPIED STATUS) = > T
W0034 <= (UPDATE YOUR OCCUPIED STATUS)
W0034 [(UPDATE YOUR OCCUPIED STATUS) j => T
W0033 <= (UPDATE YOUR OCCUPIED STATUS)
W0033 [(UPDATE YOUR OCCUPIED STATUS)] --> T
QUEUE <= (CHECK YOURSELF) [2]

QUEUE <= (IS THERE A NEW CAR?)
QUEUE [(IS THERE A NEW CAR?) I -> T
QUEUE <= (KIND OF CAR)
QUEUE [(KIND OF CAR)] ==> SMALL
CHIEF <= (TRY TO ALLOCATE A WASHER)
QUEUE <= (GET YOUR NEXT CAR)
QUEUE [(GET YOUR NEXT CT] > SMALL
CHIEF <= (FIND A SUIa. WASHER FOR SMALL)

CHIEF <== (GET YOUR FREE WASHERS)
W0037 <= (ARE YOU EMPTY?) [3]
W0037 [(ARE YOU EMPTY?)] > NIL
W0036 <== (ARE YOU EMPTY?)
W0036 [(ARE YOU EMPTY?)] > NIL
W0035 <= (ARE YOU EMPTY?)
W0035 [(ARE YOU EMPTY?)] --> NIL
W0034 <= (ARE YOU EMPTY?)
W0034 [(ARE YOU EMPTY?) I => NIL
W0033 <=- (ARE YOU EMPTY?)
W0033 [(ARE YOU EMPTY?)] > NIL

CHIEF [(GET YOUR FREE WASHERS)] => (W0037 W0036 W0035 W0034 W0033)
CHIEF <== (ARE W0037 AND SMALL COMPATIBLE?)
CHIEF [(ARE W0037 AND SMALL COMPATIBLE?) I > T

CHIEF [(FIND A SUITABLE WASHER FOR SMALL) J > W0037
W0037 <= (SET YOUR OCCUPIED STATUS)
W0037 [(SET YOUR OCCUPIED STATUS)] => 10. [4]
QUEUE <= (POP A CAR)
QUEUE f (POP A CAR) j => NIL

CHIEF [(TRY TO ALLOCATE A WASHER)] > NIL
QUEUE [(CHECK YOURSELF)] > NIL

QUEUE: NIL [5)
WASHER TIME-TILL-EMPTY

WASHER #1 (CHEAP-WASHER-FOR-SMALL-CARS) 10.
WASHER #2 (CHEAP-WASHER-FOR-BIG-CARS) 0.
WASHER #3 (EXPENSIVE-WASHER-FOR-SMALL-CARS) 0.
WASHER #4 (EXPENSIVE-WASHER-FOR-BIG-CARS) 0.
WASHER #5 (EXPENSIVE-WASHER-FOR-ALL-CARS) 0.

I

<user continues to test new code until he is satisfied>

[1) As discussed in more detail in Section 10, the trace of
* a message transmission includes (1) an entry trace of the

form A <-= B (read "A receives message B"), and an Pxit
trace of Lhe form A [b) -> C (read "A retuins C when given
B"). Simulation begins by asking each washer to update

-

K ROSS -14-

Overview and basic concepts

iLself. If the washer is occupied, this involves decrementing
time-till-empty. Note that each washer instance (e.g., W0037)
is traced, even though it is the generic that was given the
trace message.

[2] Now the queue determines if there is a new car for this
tick, and if so, what type.

[3] If there is a new car, the chief collects all its empty
washers and finds the first that is compatible with the new
car's size.

[4] Finally the chosen washer is set to "occupied" and trace
iterations are complete.

[51 Output for each tick shows the queue (now empty) and each
washer with its time-till-empty.

(compile-actors 'qsim) [Once a user is satisfied with his actors and
NIL behaviors, he can compile them into a more
(print-actors 'qsim) efficient form. As detailed in Section 14,
NIL this is a two-stage operation. First, the
(quit) actors are "macro-expanded" by file in ROSS

@<maclisp>complr and printed out to a file with .obj extension.
_qsim.obj Second, that file is submitted to the MACLISP

_tC compiler.]

@[Next time the user enters ROSS, he can load
and run the compiled version of the queueing
simulation, as described in Section 14.]

1.8. Using the manual

The following sections document the primitive behaviors of the ROSS
language (i.e., those behaviors attached to the top-level actor called
"something"). The behaviors are divided up according to function. Within
each section, behaviors are documented independently of one another; hence
the user should be able to read information about individual behaviors
without confusion. Each documented behavior has its own "box". The top
line of the box gives the basic syntax of the behavior, with brackets {...)
indicating optional expressions. This is followed by the specifications of
each of the arguments to the behavior. Finally, some examples are
presented.

ROSS -15 -
Creating actors

2. Creating actors

The current version of ROSS has several commands for defining actors
or objects. The variety of types reflects the fact that there aiV subtle
differences in the kinds of entities that can be created; the volatility
of this set reflects the fact that we have not yet settled upon a fixed
ontology for actors. Commands for creating objects can be divided into
three gross kinds: those that request a generic object (an object denoting
a class) to create objects that are instances of that class, those that
request a generic to create other generics that are subclasses of that
class, and those that request any object to create an instance by analogy
to another instance.

2.1. Creating actors to represent new subclasses

ROSS countenances two kinds of actors: An actor can either represent
a class or it can be an instance of a class. The former are called generic
objects, and the latter are called instance objects. Roughly, generic
objects should store information that is true of each member of the class,
while instances store information specific to them. To create generic
objects, use commands of the form:

CREATE GENERIC <obj> (WITH <specs>)

where: <obj> is an atom
<specs> is a sequence with alternating elementsi

of the form <attribute> <value>
or <attribute> nil

Examples: [1] (ask something create generic tablel
with legs 4 shape square

color nil)
[2] (ask moving-object create generic

fighter)

[1] will make an object "table" and do several other things: (i) It
explicitly declares the object to be a generic, or class, so that if you
now say "(ask table recall your object-type)" it will respond "generic";
(ii) it sets up "legs", "shape", and "color" as attributes of any instance
of "table" and gives default values for the first two. "Color" is given no
value and is thereby implicitly declared as "variable". That is, when
creating instances of "table" you will be expected to provide explicit
values for "color".

[2] illustrates that no <specs> need be given, in which case the
"WITH" should be eliminated.

The above command is non-destructive in the sense that if, for
example, "table" existed beforehand (as a subclass of something other than
"something"), the effect of [1] would be to create "table" as a subclass of

ROSS -16-
Creating actors

both, able to inherit the attributes and behaviors from each. A
destructive version of the command is also available:

CREATE NEW GENERIC <obj> (WITH <specs>)
f

I where: <obj> is an atom
I <specs> is a sequence with alternating elementsi

of the form <attribute> <value>
or <attribute> nil

I Example: [1] (ask something create new generic
table with legs 4 shape squarel

color nil) I

The effect of [1] here is to create "table", eradicating any
attributes and heritage it may previously have had.

2.2. Creating instances

To create instances of generics, the preferred method is:

CREATE INSTANCE <obj> (WITH <specs>)

where: <obj> is an object
<specs> is a sequence with alternating elementsi

of the form <attribute> <value>
or <attribute> nil

Examples: [1] (ask table create instance tablel
with color brown)

[2] (ask table create instance table2)

In [1], the user creates a specific instance of table. Besides making
the object, it will explicitly mark it as an instance, so that if you now
sai "(ask tablel recall your object-type)" it would return "instance".
The behavior for creating object instances also checks to see if any of the
attributes that should be specified for the instance (i.e., those
attributes of its generic ancestors that have "nil" values) have not
received values. If so, they are prompted. Thus to create instances
interactively, one can deliberately issue commands like [2], which will
cause 'color" to be prompted for.

The destructive counterpart to this command is:

ROSS -17
Creating actors

I CREATE NEW INSTANCE <obj> (WITH <specs>)

where: <obj> is an object
<specs> is a sequence with alternating elementsi

of the form <attribute> <value>
or <attribute> nil

Examples: [I] (ask table create new instance
tablel with color brown)

The definition of this command is perfectly analogous to that of
CREATE NEW GENERIC.

2.3. Tailoring the interactive creation of objects

It is possible to tailor the interactive creation of objects. When
generic objects are created, the properties declared for them actually
become real ROSS objects, which respond to a limited set of messages.
Thus, if you want "color" to be a variable attribute, but never want to be
prompted for it, you can say:

(tell color stop prompting for values).

To turn "color" on again, just say:

(tell color prompt for values).

To turn off all properties, you could say:

(ask property ask each of your offspring to stop prompting for
values).

or even better:

(ask property stop prompting for values)

Finally, you can also tailor the way in which attributes are prompted for.
Normally you will see something like:

"Value for COLOR of TABLE3 ?"

But if you say:

(ask color change your user-question to (What is the >prop
of >obj ?))

the prompt will be:

WHAT IS THE COLOR OF TABLE3 ?

ROSS 18-
Creating actors

This facility, although cute, is of limited usefulness, since the question
template you supply must contain variables for the property and object, in
that order. But in general, the use of properties as bona fide objects
yields several nice benefits, others of which we will exploit in the
future.

2.4. Creating actors by analogy

There are currently two ROSS commands that allow users to create
objects by analogy to other already existing objects. This facility is
often very convenient when one wants to make a large number of identical,
or nearly identical, instances en masse. To make a new object that is an
identical copy of an old one, except for its name, use:

DUPLICATE YOURSELF AS <newobj>

where: <newobj> is the name of the new object

Example: [11 (ask fighterl duplicate yourself as
fighter2)

Here, fighter2 will be created as a copy of fighterl, and will be made
a brother of fighterl; that is, they will both have the same parents. If
fighterl does not exist, the command will generate a ROSS error. If
fighter2 already exists and has the same parent as fighterl, then ROSS will
again gripe, and not allow the creation. However, if fighter2 already
exists with different parents, DUPLICATE YOURSELF acts like MAKE in the
sense that all of fighterl's attributes are copied onto fighter2, but the
attributes previously associated with fighter2 (by virtue of its being an
instance of another class) are retained.

ROSS's most sophisticated command for creating objects allows the user
to create several objects, all of which are "near misses" of a given
object. With it, the user names the objects to be created, the example
object that provides a model, and a set of exceptions that dictate how each
of the new objects differs from the example.

MAKE <object> LIKE <example> EXCEPT <quals>

where: <object> is a sequence of names for new objects
<example> is an existing object
<quals> is a sequence of commands of the form:

SET <obj> <attribute> TO <value>

Example: (1 (ask fighter make fighter2 like fighterl
except set fighter2 xcoor to 9

set fighter2 ycoor to 2)

ROSS 19-
Creating actors

In [1], fighter2 first is created as a copy of fighterl. Then

fighter2 gets new xcoor and ycoor attribute values (presumably overriding
the ones inherited from the generic fighter or given by analogy from
fighterl). Note that no order restrictions are placed on the specification
of the SET qualifications. Finally, because MAKE LIKE uses DUPLICATE
YOURSELF, all its error conditions apply to MAKE LIKE.

2.5. Some other commands

ROSS contains several commands for making objects that are not
particularly recommended (their functionality, and more, is provided by the
above commands), but that are still supported for historical reasons.
There is no commitment to support them in the future, however. The user
should be aware that in a short time they may no longer work.

The following command is like CREATE, except (i) it never operates
interactively, (ii) it never checks to see if created objects have values
for all their required attributes, and (iiiT it assigns no generic or
instance status to the objects it makes.

MAKE <obj> (WITH <specs>)

where: <obj> is an atom
<specs> is a sequence with alternating elementsi

of the form <attribute> <value>

Examples: [1] (ask male make george with
height 190 weight 200)

[2] (ask doctor make george with
salary 200000)

[3] (ask moving-object make fighter)

In [1], an instance of male, called george, is created, and given a
specific height and weight. In [2], since george already exists, doctor
effectively adds a salary attribute to the existing structure, and sets
george's PARENTS to (male doctor). [3] Shows that, like CREATE commands,
MAKE need not have <specs>, in which case WITH is eliminated. Note also in
[3] a generic is being made, while in [I] and [21 instances are created.

MAKE's destructive counterpart is REMAKE. It operates in an exactly
analogous manner.

ROSS -20-
Creating actors

REMAKE <obj> (WITH <specs>)

where: <obj> is an atom
<specs> is a sequence with alternating elements

of the form <attribute> <value>

Examples: [1] (ask male remake george with
height 190 weight 200)

[2] (ask doctor remake george with
salary 200000)

[3] (ask moving-object remake fighter)

Here, [1] has the same effect as above, but [2] causes the original
george to be clobbered, and a new one, who is a doctor, to be created. [3]
shows a use of REMAKE without <specs>.

2.6. Killing objects

During the course of a simulation one may find that an actor is no
* longer of use. This is particularly true of instance-objects, since they

often have a limited "life-time" in a simulation. In such cases it is a
good idea to kill the object and not simply to ignore it, because by
killing it you free up space (which may be at a premium in large programs).

To accomplish this use:

I KILL YOURSELF

I Example: [1] (ask george kill yourself)

Note that [1] will not only cause the structure associated with george
to be reclaimed, but also will cause george no longer to be the offspring
of his parents. However, other references to george will NOT be removed.
This is up to the user.

4

ROSS -21-
Manipulating the behavior of actors

3. Manipulating the behavior of actors

Defining a new behavior for an object means stipulating the actions it
is to perform when it receives a message of a particular type. To make
behaviors powerful, we need a means for specifying the actions an actor is
to perform when receiving any of a class of messages. In ROSS this is done
by associating a message template with the to-be-performed actions. A
message template is a message with zero or more variables. When an actor
is sent a specific message, it is matched against the message templates of
the actor's behaviors. A match occurs whenever the specified parts of a
template are identical to the incoming message; variables in the template
do not affect the match. Thus, a template can match a class of messages,
defined by the range of values its variables may take on in incoming
messages. Any member of this class will trigger the behavior's action.

To define a behavior it is necessary to set up an association between
a class of messages and some actions. This is done by using the command:

WHEN RECEIVING <msg-template> <actions>

where: <msg-template> is a message with embedded
variables

<actions> is any sequence of ROSS commands

Example: [I] (ask sam when receiving
(>fact is private)
(tell mike remember !fact)
(tell alan remember !fact))

[I1 operationalizes the notion of a blabbermouth. In more detail: In
[l we are saying that each time sam receives a message of the form "(>fact
is private)", sam should (or at least will) issue 2 messages, one to mike,
and another to alan, to remember the private fact.

Note how "fact" appears in both the message template and in the ROSS
commands that make up the body of the actions. The ">" prefix of "fact" in
the template causes ROSS to set the variable "fact" to be the corresponding
element in the incoming message. Thus, when "fact" is evaluated in the
main body of the behavior (through "!fact"), the resulting value is always
the element that "fact" matched. (See Section 1 for a more detailed
discussion of variable prefixes and their effects.) To take a concrete
example, if the message coming in to sam were:

((harry made $20,000 last year) is private),
then sam would issue the following commands:

(tell mike remember (harry made $20,000 last year)) and

(tell alan remember (harry made $20,000 last year)).

ROSS -22-
Manipulating the behavior of actors

The user may wish to manipulate existing behaviors as well as create
them. ROSS also allows the user to recall behaviors and to destroy them.

RECALL BEHAVIOR MATCHING <message>

where: <message> is a message sample (no variables)
or message template that will match
the template of the target behavior

Examples: [1] (ask sam recall behavior matching
(anyfact is private))

[2] (ask sam recall behavior matching
(+ private))

[1] will cause sam to return the behavior (i.e., pattern plus
associated actions) whose template is, for example, "(>x is private)".
This template matches the given sample since where they are not identical
the template has a single-atom variable that will match "anyfact". [2]
will match the same template because "+" matches any segment, in particular
">x is".

ROSS does not prevent the user from defining several behaviors for a
given message template, or, more generally, from defining several behaviors
whose templates can match non-disjoint classes of messages. This
overlapping is generally not desirable, however; when a given message is
passed to an actor, it will simply execute the first behavior it finds that
matches it. This behavior is also the one returned by RECALL BEHAVIOR
MATCHING.

The present version of RECALL BEHAVIOR MATCHING looks only at
behaviors explicitly associated with the given actor, not its ancestors.
In this respect it is not analogous to message processing, since the latter
exploits inheritance.

FORGET BEHAVIOR MATCHING <message>

where: <message> is a message sample (no variables)
or message template that will match
the template of the target behavior

Examples: [1] (ask sam forget behavior matching
(anyfact is private))

(1] shows how easily brainwashing is done in ROSS. As a consequence
of this command, sam will now no longer make indiscrete disclosures to mike
and alan. In fact, generally, now any message of the form "> is private"
will produce a ROSS error.

ROSS -23-
Manipulating the behavior of actors

The assumptions noted with reference to RECALL BEHAVIOR MATCHING are
in force here too. Specifically, if several of sam's behaviors match the
given template, only the first one found (which is the one that would get
executed) will be eliminated. Thus, it is possible to "unmask" old
behaviors of an object. Finally, FORGET BEHAVIOR MATCHING only allows the
user to eliminate behaviors directly associated with an actor, not those it
can access through inheritance.

In order to kill all behaviors associated with a message for an actor,
not merely the most recent one, use:

KILL BEHAVIORS MATCHING <message>

where: <message> is a message sample (no variables)
or message template that will match
the template of the target behavior

Examples: [1] (ask sam kill behaviors matching
(anyfact is private))

[21 (ask sam kill behaviors matching
(+ private))

All assumptions associated with FORGET BEHAVIOR MATCHING are in force
for KILL BEHAVIORS MATCHING.

4

ROSS - 24 -

VManipulating the attributes of actors

4. Manipulating the attributes of actors

If we view actors as atoms, then their attributes are analogous to
LISP property-lists. The current ROSS commands for manipulating such
attributes divide two ways--first according to the prescribed operation,
second according to the kind of structure assumed to be the value of the
attribute. Typically, values are either numeric atoms, non-numeric atoms,
or simple lists (lists of atoms).

4.1. Setting and fetching attribute values

To set a given attribute of an actor to an atomic value, use:

SET YOUR <slot> TO <value>

where: <slot> denotes an attribute
<value> is an atomic value

Examples: [1] (ask george set your age to 34)
[2] (ask george set your hair to brown)I
[3] (ask molecule33 set your valence tot

+3)

In (1], the user sets george's age to 34, while in [2], a non-numeric
value is set. Note that any previous value for these attributes will be
clobbered.

The user will also want to be able to recall atomic-valued attributes
and to eliminate them altogether. The commands to accomplish these actions
are:

RECALL YOUR <slot>

where: <slot> denotes an attribute

Example: [1] (ask george recall your age)

FORGET YOUR <slot>

where: <slot> denotes an attribute

Example: (2] (ask george forget your age)

ROSS -25
Manipulating the attributes of actors

Assuming that george had previously set his age to 34, [1] will return
34, while [2] will eliminate the attribute age from george altogether.
After this point, issuing [1] will return a NIL value. NIL is also
returned when one attempts to RECALL an attribute that was never SET in the
first place.

4.2. Changing attribute values

The following two ROSS commands are specifically designed to deal with
numeric attribute values.

INCREMENT YOUR <slot> BY <n>

where: <slot> denotes an attribute
<n> is any positive integer

Example: [1] (ask dudley increment your age by 1)1

DECREMENT YOUR <slot> BY <n>

where: <slot> denotes an attribute
<n> is any positive integer

Examples: [2] (ask harry decrement your age by 1)1
[3] (ask molecule33 decrement your

valence by 1)

[1] shows how dudley, like most other people, alters his age attribute
once a year. [2] shows that harry claims to get younger year by year.

An error will be generated if the user attempts to INCREMENT or
DECREMENT an attribute that has a non-numeric value, or no value at all.

4.3. Adding to and selectively deleting from attribute values

* Finally, there are two ROSS commands for manipulating attributes that
have lists as values.

I

ROSS - 26 -

Manipulating the attributes of actors

ADD <value> TO YOUR LIST OF <slot>

where: <slot> denotes an attribute
<value> is any structure

Examples: [1] (ask fanny add jones to your list
of neighbors)

[2] (ask fanny add brown to your list
of neighbors)

Adding an element to a non-existent list causes a list with a single
element to be created; thus, assuming prior to [1] that fanny had no
neighbors, [1] causes that attribute to be set to (jones). Now, [2]
results in fanny's neighbors being set to (brown jones). Note that when a
value is added to a list, no checking is done to see if the value is
already there, thus duplicate values are possible.

REMOVE <value> FROM YOUR LIST OF <slot>

where: <slot> denotes an attribute
<value> is any structure

Example: [1] (ask fanny remove jones from your
list of neighbors)

Note that if multiple identical values exist in the list, REMOVE will
delete only the first appearance.

ROSS - 27 -
Manipulating the memory of actors

5. Manipulating the memory of actors

Actors can be asked to remember or forget certain facts. Actually,
to-be-remembered facts are instances of values that can be added to an
actor's THINGS-TO-REMEMBER attribute; thus it is possible to manipulate an
actor's "knowledge-base" by using an appropriate SET YOUR command. However,
the current ROSS provides special commands for manipulating an actor's
facts.

REMEMBER <fact>

where: <fact> is any list structure intended to denotel
a relational fact

Example: [1] (ask penetratorl remember
(gci3 is disabled))

ROSS will currently accept any list structure as a fact, although
there is not much point in supplying your program with fact-patterns that
are not at least meaningful to you. Since ROSS does not understand the
facts supplied to actors, it treats them as syntactic patterns, and
pattern-matching is the only technique available to retrieve or otherwise
manipulate facts.

To get an actor to recall the facts in his knowledge-base matching a
particular pattern, use:

COLLECT ITEMS MATCHING <pattern>

where: <pattern> is any list structure, possibly
containing variables, as defined
in Section 1.

Example: [1] (ask Ralph collect items matching
(+ is unsafe at any speed))

[1] will return all facts in Ralph's knowledge base such as [a] "(A
Nathan's hotdog is unsafe at any speed)". If the pattern "(> is unsafe at
any speed)" has been used in [1] instead, [a] would not have been returned,
because > matches only a single structure, and + is a segment variable. If
you do not understand this, go review Section 1.

Currently, an actor cannot inherit facts or knowledge-bases. That is,
in [1], if Ralph did not explicitly know anything that was unsafe at any
speed, then ROSS would not have consulted any of Ralph's superordinates for
items matching the pattern.

ROSS - 28 -

I lanipulating the memory, of actors

Sometimes the user will want to know only that there are facts
matching a given form in an actor's knowledge-base, not what the facts are.
The most convenient way to accomplish this is to use:

RECALL IF ANY ITEMS MATCH <pattern>

where: <pattern> is a list structure denoting a fact
template

Example: [1] (ask penetratorl recall if any
items match (gci3 +))

In [1], penetratorl would return T if he knew anything about gci3;
otherwise it would return NIL.

In order to get an actor to forget one of his remembered facts, use:

FORGET ITEM MATCHING <pattern>

where: <pattern> is a list structure denoting a fact
template

Example: [I1 (ask penetratorl forget item
matching (gci3 +))

Again, only the first fact known to an actor that matches the given
pattern will be deleted.

ROSS -29-Manipulating the plans of actors

6. Manipulating the plans of actors

In the current ROSS, an actor plans by scheduling a command to be
executed at some future time. As the ROSS simulator ticks forward in time,
it looks at all scheduled plans, executing them when their scheduled time
matches the current simulation time. The following command allows actors
to schedule plans.

PLAN AFTER <n> SECONDS <action>

where: <n> is any positive integer
<action> is any ROSS command, ROSS action, or

executable LISP form

Examples: [1] (ask dave plan after 10 seconds
ask personnel recall if any

items match
(mcarthur has clearance))I

[2] (ask dave plan after 10 seconds
recall your clearance-status)

[1] would be one way for dave to ensure that at some time in the near
future, personnel gets a nasty call concerning their (slow) efforts at
arranging a certain clearance.

What once seemed like a good idea can later look bad, so ROSS provides
a simple mechanism for unscheduling planned activities.

UNPLAN <action>

where: <action> is a pattern template or sample to be
matched against all specific planned
actions for the given actor

Examples: [1] (ask fighter4 unplan
(turn > degrees left))

[2] (ask fighter4 unplan
(turn 15 degrees left))

Here [1] would cause fighter4 to unplan any activity involving his
turning left. [2] requests a more specific planned action be expunged.
Note that if an actor has several plans that match the given template, only
the most recently scheduled one is unplanned.

To get rid of all actions matching a template, use:

I-

ROSS -30-
Manipulating the plans of actors

UNPLAN ALL <action>

where: <action> is a pattern template or sample to be
matched against all specific planned
actions for the given actor

Examples: [1] (ask fighter4 unplan all
(turn > degrees left))

[2] (ask fighter4 unplan all
(turn 15 degrees left))

Plans, like knowledge-bases, are actor properties that cannot be
inherited in the current ROSS.

ROSS 31
Broadcasting messages to actors

7. Broadcasting messages to actors

In some cases, the action you might want an actor to perform does not
involve the actor doing something itself so much as telling others what to
do. The indirection this affords can be an especially powerful feature
when each of a large set of objects should do a specific action. The trick
is to find an actor that has a pointer to the desired set, and then tell
that actor to tell everyone in the set to effect the required act.

ROSS has several commands that allow actors to do things indirectly by
broadcasting messages to other actors.

ASK EACH OF YOUR <slot> TO <action>

where: <slot> denotes an actor attribute whose valuel
should be a list of oti.er actors

<action> denotes any ROSS message

Example: [11 (ask fighter ask each of your
offspring to set your bombs to 6)1

[1] allows all offspring of the generic fighter to have their (number
of) bombs set to 6.

In some cases you have to issue a command indirectly because you do
not have a direct handle on who should act; rather you know that whoever
it is meets a certain description, or, more accurately, can be found in a
certain slot-location. The following command allows you to accomplish
this:

ASK YOUR <slot> TO <action>

where: <slot> denotes an actor attribute whose value
should be another actor

* <action> denotes any ROSS messase

Example: [11 (ask molecule3 asV your carbon-atoml
to set your status to captured)I

Finally, here is a simple way for an actor to defer an arbitrary
command to an arbitrary other actor:

6

ROSS - 32 -

Broadcasting messages to actors

KASK <obj> TO <action>
where: <obj> is any ROSS object

<action> is any ROSS command

I Example: [1] (ask harry ask george to
plan after 30 seconds
ask milton implement newplan)

In [1], harry gets george to plan something, namely that george will
ask milton to implement the new plan.

I-A

ROSS -33-
Making actors print themselves

8. Makin8 actors print themselves

The user may want to view actors in several different ways. The
commands discussed up to now only allow the user to see an object's
structure one attribute at a time. Often it is convenient to get a more
complete view of the actor. The following two commands permit this. The
simplest command for printing an actor is:

PRINT YOURSELF IN DETAIL

Example: [1] (ask female make stella)
(ask economist make stella)
(ask stella print yourself

in detail)

The sequence of ROSS commands in [1] creates stella as an instance of
both the classes female and economist, and as such she implicitly inherits
attributes from both. Thus when the last of the three commands is issued,
the user will see a report of all stella's female and economist features,
including behaviors, plans, and so on.

The above print commands return all kinds of information associated
with an actor. Often we want to be more discriminating in what we see; we
want to print an actor from a certain point of view. ROSS currently has
one command that provides this ability to a limited extent.

PRINT YOUR <type>

where: <type> is one of
BEHAVIORS PLANS FACTS ATTRIBUTES SELF

Examples: [1] (ask fighter print your behaviors)
[21 (ask paula print your attributes)
[3] (ask molecule33 print your

* atom-constituents)

The different types define a partition of the ROSS knowledge
associated with a particular actor. As has been discussed, this knowledge

* includes information about how an actor responds to particular messages
(its behaviors); what it is intending to do (its plans); what relational
propositions it knows (its facts); and its simple attributes. In addition
the type SELF refers to all of the above. Currently, PRINT YOUR will print
only views of objects that constitute a subset of the properties explicitly
associated with an actor. Thus, PRINT YOUR SELF gives a complete
description of all and only the information directly stored with an actor.

V .

4ROSS 3
Making actors print themselves

If all you want is to cause the value of a single actor property to be
printed to your terminal, use SHOW:

, SHOW YOUR <attribute>

Example: [1] (ask female make stella)
(ask economist make stella)
(ask stella show your parents)

Here the SHOW command in 11] causes "(economist female)" to be
printed. Thus, SHOW is something like RECALL. The difference is that SHOW
prints (returning T), while RECALL returns it.

L ROSS -35-

Making actors act: the clock

9. Makin actors act: the clock

To set a ROSS simulation in motion and to keep it going, one needs to
be able to signal the passage of simulation time. "Ticking", or
incrementing time, arbitrarily permits many planned actions of a variety of
actors. These typically result in the sending of other messages,
triggering other behaviors and planning activities. In order to increment
time by one step, use:

I (ASK NCLOCK TICK)

I Note: NCLOCK is a predefined ROSS actor

By sending NCLOCK a tick message, the user sets in motion a predefined
ROSS actor that takes care of all the implications of the time increment.
Specifically, NCLOCK will check each actor to see if, by virtue of the time
change, that actor now has planned activities that should be executed. If
so, they are fired.

To get the clock to tick several times without interruption, use:

I (ASK NCLOCK TICK <n> TIMES)

I where: <n> is an integer

In ROSS, a tick represents a user-modifiable interval of seconds and
can be altered with commands of the form:

(ask nclock set your $ticksize to 20)

The above command sets the tick unit, and hence the granularity of
simulation time, to 20 seconds. The default "$ticksize" is 30.

Nclock has one additional attribute of general importance. The
"$stime" attribute records the current simulation time, and it can be
recalled or set just like any other actor attribute.

A

i ROSS -36-
Making actors trace themselves and report errors

10. Making actors trace themselves and report errors

Currently, ROSS provides a few diagnostic tools by which the user can
track down his bugs. The tools include (i) a trace facility, and (ii) a
simple error handler.

10.1. The trace facility

The ROSS trace facility is available to assist users in tracking down
bugs in message passing. The trace package is not implemented as an
autonomous LISP package, but instead provides user aids by exploiting
object-oriented programming techniques. Specifically, to get an object to
trace itself, use:

TRACE YOUR BEHAVIOR MATCHING <msg-pattern>

where: <msg-pattern> denotes a ROSS message instance
or template

I Examples: (11 (tell foo trace your behavior
matching (set your x to y))

[2] (tell foo trace your behavior
matching (set your +))

[1 results in a trace of each "set" .nessage sent to foo. [2] will
have a similar effect, although the behavior is specified by giving a
template and not a pattern sample. If command [1] is issued, every time
foo is sent a "set" message, something like the following will appear:

FOO <= (SET YOUR X TO 1.)

FOO [(SET YOUR X TO 1)] --> 1.

The first line represents the entry trace--foo was sent (set your x to 1).
The second line represents the exit trace--l. was returned from foo when
it was given the message "set your x to 1". Generally, A <= B means A was
sent message B; A [B] =-> C means A returned C when given B.

The semantics of trace inheritance are that of inheritance in general.
In other words, any descendant of "foo" (any object that inherits from
"foo") will have its "set" messages traced as well. Similar messages sent
to other classes of objects (e.g., objects like "something", which are
higher on the inheritance tree) will not be affected. Part of the power of
the ROSS trace facility comes from being able to carefully select the
context in which a message will be traced. This context can be as wide or
narrow as necessary for debugging purposes, depending on the inheritance
level chosen for tracing.

ROSS -37

Making actors trace themselves and report errors

To untrace a given message for an object, use:

UNTRACE YOUR BEHAVIOR MATCHING <msg-pattern>

where: <msg-pattern> denotes a ROSS message instance
or template

Examples: [1] (tell foo untrace your behavior
matching (set your x to y))

[2] (tell foo untrace your behavior
matching (set your +))

10.1.1. Constraints on tracing

There are several restrictions on tracing that the user should keep in
mind to use the facility effectively. First, untracing is not guaranteed
to have the desired effect unless the object given the untracing message is
the object that was given the tracing message. Second, since the behavior
traced mzy be an inherited one (e.g., above, presumably the behavior being
traced belongs directly to "something", not "foo"), tracing conflicts may
arise. This happens when two or more objects ask to trace the same
inherited behavior. For example "bar", which is not a descendant of foo,
may try tracing "set" messages too. Such conflicts are NOT PERMITTED.
What will happen is that first the message will be UNTRACED for "foo" then
traced for "bar". If the user wishes both actors to be able to trace a
common message, he should give the trace command to the narrowest common
ancestor of both "foo" and "bar".

10.1.2. Tracing without inheritance

The user can deliberately restrict tracing/untracing to non-inherited
behaviors by using:

TRACE EACH OF YOUR BEHAVIORS MATCHING <msg-pattern>

where: <msg-pattern> denotes a ROSS message instance
or template

Examples: [I] (tell command-center trace each of
your behaviors matching
(gcil has lost pen2))

121 (tell command-center trace each of
your behaviors matching
(+ has lost +))

and

a

ROSS -38-
Making actors trace themselves and report errors

UNTRACE EACH OF YOUR BEHAVIORS MATCHING <msg-pattern>

where: <msg-pattern> denotes a ROSS message instance
or template

Examples: [1] (tell command-center untrace each
of your behaviors matching
(gcil has lost pen2))

[21 (tell command-center untrace each
of your behaviors matching
(+ has lost +))

The ability to trace behaviors specifically associated with an object
is often very useful during initial debugging. A common technique is to
"turn on" all and only the behaviors of a single generic object and run the

simulation to observe only that class's behaviors. To facilitate this, two

special commands are available:

I TRACE EVERYTHING

I Example: [1] (tell command-center trace
everything)

and

I UNTRACE EVERYTHING

I Example: [1] (tell command-center untrace
everything)

10.1.3. How to start tracing

The ROSS trace facilities are not part of the initial ROSS
environment. Instead, the trace package is autoloadable. To bring tracing
into the user's current environment he should type "(ross-trace)". A few

lines will then show up, indicating the autoload. Now the user can proceed
to trace and untrace.

10.2. Error messages

Error handling in ROSS, like tracing, is not done by an external LISP

function, but by a special error actor, called "ross-error". Generally,

ross-error handles warning and fatal error conditions and gives a

description of the encountered problems.

ROSS 39
Making actors trace themselves and report errors

The most common fatal error condition occurs when ROSS runs across a
command that it cannot interpret. In this case it reports back the object
or actor it was intending to give the message to and the message itself.
Usually either the actor does not exist or no behavior with the given
pattern can be found, so these diagnostics should pin-point the problem in
most cases.

An example error message might be

NO MATCHING MESSAGE PATTERN
ACTOR = FOO
MESSAGE = (MUMBLE BAR).

Here ROSS had encountered a command of the form "(tell foo mumble bar)",
and failed to execute it, either because foo does not exist, or it does not
inherit a behavior with a pattern matching the message (e.g., "(mumble
>stuff)").

The user may tailor or extend the behaviors of ross-error in several
ways making it potentially (although not yet practically) an intelligent,
flexible actor. First, one can modulate the level of detail in
ross-error's report. Currently, by issuing the message:

(ask ross-error set your mode to terse)

one tells ross-error to stop reporting warning-level messages, while

(ask ross-error set your mode to verbose)

reinstates the full level of report. At present only terse and verbose
levels of report are available, and verbose is default.

Second, one can put calls to ross-error in user code, using it
analogously to the LISP functions "err" or "error". If one embeds the
message:

(ask ross-error error undefined message keyword)

in ROSS code, then, when executed, it will result in (i) the message
"undefined message keyword" being printed; and (ii) an interrupt. If one
embeds the message:

(ask ross-error warning suspect value for keyword)

this will result in the message "suspect value for keyword" being printed,
provided that ross-error's mode is verbose. Note that no interrupt is
generated for warning-level user-defined error messages.

"4

!"

- ROSS -40-
Editing actors

11. Editing actors

ROSS has a very powerful facility that allows the user to create and
alter the definition of object behaviors using the screen oriented editor
EMACS (Stallman, 1981) while within ROSS. This enables the user to create
and debug actor behaviors, promoting rapid development of large ROSS
systems. To edit an existing behavior, use:

EDIT YOUR BEHAVIOR MATCHING <pattern>

where: <pattern> is a pattern or a pattern template

Examples: [1] (ask fighter edit your behavior
matching (engage +))

[21 (ask fighter edit your behavior
matching (engage penetrator))

In [1], the user specifies a behavior by giving a pattern template,
while in [2], he gives a pattern instance. Both will match a behavior, for
example, with pattern (engage >pen). If a behavior with such a pattern
exists in any of the files that ROSS "knows about" (see below), then an
EMACS subfork is fired up (or continued) with that file. When the dust
settles, the user will find the cursor pointed at the behavior he had asked
to edit, and he can make changes to the text as in a usual EMACS session.
When he is satisfied with the changes, he should issue an M-z (not M-Z!),
while the cursor is still pointing to the behavior. This will "save" the
behavior for return to ROSS and MACLISP.

While in the editing session, the user not only can alter existing
behaviors but may create new ones as well. Like the changed ones, these
should also be marked with M-z, when completed. Once the user has made all
his modifications, all saved changes can be returned to ROSS by issuing M-Z
(not M-z!). Now, the interpreted versions of the behaviors will be
different, and the permanent files will reflect the actor changes.

The ROSS-EMACS facility represents an extension of LEDIT, a software
package that lets MACLISP and EMACS talk. The commands mentioned above
(and others that are more applicable to saving LISP code) are documented
in more detail in <MACLISP>LEDIT.DOC. You should get a copy of this to use
the ROSS-EMACS connection to its full power.

11.1. Editing Requirements

To be able to edit object behaviors, files containing actors and their
behaviors must be loaded in a special way, so that the correct file
location of each behavior is noticed by ROSS. The proper procedure is:
(i) put all of your behaviors for an object (or set of objects) in a single
file; (ii) at the top of the file put a ROSS declaration of the form:

.°

ROSS -41-
Editing actors

(file-actors: <actori> <actor2> ...).

Make sure you include every actor whose behaviors are given in the file;
(iii) when loading the file, say:

(1load-actors '<filename>).

Currently lload-actors assumes a .lsp extension for your actor files and
does not expect to see an extension specified. So to lload-actors foo.lsp,
say

(lload-actors 'foo).

You need one last thing to use the ROSS-EMACS connection: an
EMACS.INIT file that is compatible with the use of the LEDIT facility. You
probably do not have one of these at present, so we suggest copying the one
in <MACLISP>EMACS.INIT. You may, if you wish, eliminate some of the simple
customizations at the beginning, but we would suggest leaving everything
else.

4

4

4

- 4 '

ROSS -42-
Flow of control

12. Flow of control

In ROSS, one cannot currently create control-structure objects. In
this regard ROSS is not as flexible as SMALLTALK or LISP (where one can
define new flow-of-control functions as easily as any other sort of
functions). ROSS is, unfortunately, more like typical procedural
programming languages (FORTRAN, ALGOL, PASCAL, etc.) that come with a
predefined set of control functions, such as DO, FOR, WHILE, UNTIL, etc.

Flow of control in ROSS is, in fact, provided by a set of underlying
MACLISP functions. These functions, however, are especially suited to ROSS
in that they are keyword-based and highly English-like. Together with
appropriately English-like behavior definitions, they allow a user to write
highly readable code.

12.1. Conditionals

The standard MACLISP conditional is COND. In ROSS, although it is
possible to use COND, IF provides a much more readable alternative to COND
in many cases. The form of IF is:

(if <test> then <computel> else <compute2>).

It is equivalent to:

(cond (<test> <computel>)
(T <compute2>)).

IF has some variants. If there is no "else" clause, it can be omitted, as
in:

(if (foo x) then (bar y)).

In such cases, the word "then" may also be omitted if you wish, as in:

(if (foo x) (bar x)).

A simple IF is less general than COND; however, if necessary, nested IFs
can do the job of any COND. For example:

(if <testl> then <computel>
else (if <test2> then <compute2>

else (if <test3> then <compute3>
else <compute4>)))

is equivalent to:

(cond (<testl> <computel>)
(<test2> <compute2>)
(<test3> <compute3>)
(T <compute4>)).

ROSS -43-
Flow of control

12.2. Iteration

The MACLISP loop macro provides a very powerful and general facility
for iterative control. In fact, you should not need to use anything else.
Below are just a few examples of the use of loop. To get a complete
understanding of its keywords and functionality, refer to Chapter 18 of
"The Lisp Machine Manual" (Weinreb and Moon, 1981). Here are some
examples:

(loop for x in (ask fighter-base recall your fighters)
when (not (ask !x are you engaged))
do (ask !x vector yourself to !penetrator))

[This loops through each fighter in fighter-base's fighters and vectors to
the penetrator all those that are not engaged.]

(loop for x in (ask fighter-base recall your fighters)
when (not (ask !x are you engaged))
return (ask !x vector yourself to !penetrator))

[This is like the above only the use of the "return" keyword instead of
"do" causes immediate return out of the loop after the first fighter is
vectored.)

(loop for x in (ask fighter-base recall your fighters)
when (not (ask !x are you engaged))
do (ask !x vector yourself to !penetrator)
else when (not (ask !x are you on the ground))

do (ask !x complete mission)
(ask !x land))

[This loops through all the fighters asking those that are not engaged to
revector and those that are engaged and not on the ground to complete their
mission and return to base.]

I,

ROSS -44-
How to write English-like code in ROSS

13. How to write English-like code in ROSS

One of the design goals of ROSS was to provide a language in which it
is easy to write readable English-like code. This is desirable for several
reasons; if code is readable, experts in the domain of a simulation, who
are not necessarily programmers, can verify that domain knowledge is being
encoded accurately. Several features of ROSS facilitate the writing of
English-like code. However, ROSS cannot force you to write code in a
readable fashion -- you have to follow a few stylistic guidelines. In this
section we elaborate on a few more rules of thumb.

By following a few simple rules we can make behaviors much more
readable, allowing their functionality to stand out.

RULE 1: Use keyword-based structured programming macros, such as
"loop" and "if". These were discussed in Section 12.

RULE 2: Avoid FORTRAN-like naming conventions. Use non-hyphenated,
mnemonl. expressions for your message patterns. For example, there is no
reason to say "(ask base assign-fighter-to ...)" when you can say "(ask
base to assign a fighter to ...)".

RULE 3: Use message patterns that read as full sentences. This is a
natural extension of 2. For example, say "(ask fighter when receiving
(the >penetrator is in your radar range) ...)", not "(ask fighter when
receiving (>pen in range)

RULE 4: Try to keep things as uniformly object-oriented as possible.
You can stay away from LISP most of the time, if you try. The only real
exception is in regard to control functions (such as "if" and "loop"),
because ROSS does not have its own. Following this rule, you should, for
example, say "(ask !actor report !n)", not (print n). This will require
you to write an extra behavior, but the improvement in readability is often
worth it.

RULE 5: Do not be afraid to write behaviors that are functionally
identical, if their different message patterns make for more readable code
in different contexts. For example, ROSS comes with a built-in behavior
fielding message of the form "(ask !myself recall your foos)", but this
phrasing may be awkward, for example, if you really want to use it as a
test to see if there are any foos. You might prefer to say: "(ask !myself
if I have foos)". If so, just define the latter message pattern to be
equivalent to ROSS's built-in behavior.

There is one more powerful way to improve the readability of code.
This involves the use of judicious abbreviations to make expressions flow
more naturally. The next section discusses the function of the
abbreviation package.

ROSS -45
How to write English-like code in ROSS

13.1. The abbreviation package

There are many cases where ROSS's syntax is long-winded and awkward.
For example the "ask !myself" locution is often tedious. Instead of:

(ask !myself set your bar to !(ask myself recall your zot))

you might like to say something like:

(you set your bar to (your zot)).

The abbreviation package provides this kind of functionality. The
construction of abbreviations is taken care of by a LISP function called
"abbreviate". To define an abbreviation that effects the above, the user
would say:

(abbreviate '(ask !myself) 'you)
(abbreviate '(ask !myself recall your) 'your).

Now he can write:

* (ask foo set your bar to (-your zot))

and expect that the proper substitution for his abbreviation will be taken
care of. Note that ALL ABBREVIATIONS MUST BE PREFIXED BY - in the user's
code. This enables the abbreviation package to distinguish abbreviation
usages of "your" from literal usages, such as in "set your".

The simplest abbreviation specification, as above, tells ROSS that one
atom is to be regarded as equivalent to a list of words; in fact, tie list
will be substituted for the word every time it is found in the input
stream. In more complex situations, you might want to have one pattern of
atoms considered equivalent to another. This can be done in calls to

* abbreviate such as:

(abbreviate '(ask >v2 create an instance) '(an >v2))

Here the user tells ROSS to substitute sequences of the form "...ask
<any-object> create an instance..." for such sequences as .. .an

* <any-object>...", thus allowing him to use the latter in writing code.
Variables are specified just as in behavior creation. In general, you may
specify variables at any point in the sequences constituting the first or
second arguments to abbreviate; just make sure that the names given to the
variables are the same in both of the arguments. This is especially
critical for resolving ambiguity when you have several variables in a

* sequence.

Currently, ROSS comes with no default abbreviations. With
"abbreviate", the user should create his own to suit his style of
programming and his domain. These can be placed in a separate file and
loaded into ROSS along with other LISP and ROSS code. The following gives

* an example of a specific set of abbreviations used in writing an extensive
air-battle simulation (Klahr et al., 1982) and example code written using
these abbreviations.

ROSS -46-
How to write English-like code in ROSS

The abbreviations used include:

(abbreviate '(set your) 'sy)
(abbreviate '(recall your) 'ry)
(abbreviate '(print your) 'py)
(abbreviate '(to your list of) 'tylo)
(abbreviate '(from your list of) 'fylo)
(abbreviate '(plan after) 'pa)
(abbreviate '(ask each of your) 'aeoy)
(abbreviate '(ask !myself) 'you)
(abbreviate '(ask !myself) 'me)
(abbreviate '(ask !myself recall your) 'your)
(abbreviate '(ask >vl create an instance) '(an >vl))
(abbreviate '(!) 'the)
(abbreviate '(!myself) 'yourself)
(abbreviate '(&) 'execute)
(abbreviate '(setq >var >val) '(let >var be >val))
(abbreviate '(&) 'that)
(abbreviate '(ask !myself schedule after !>vl seconds)

'(after >vl))
(abbreviate '(ask !myself schedule after !>vl seconds)

'(requiring >vl))
(abbreviate '(ask >vl recall your offspring) '(every >vl))

Example code using these abbreviations might look like:

(ask fighter when receiving (engage >penetrator)
(if (ask mathematician is -the penetrator in range of -yourself)

then (-you commence end game with -the penetrator)
else (-you return to base)))

(ask fighter when receiving (>penetrator is in your range)
(-you stop looking for -the penetrator)
(tell !(-your gci) -yourself has sited -the penetrator)
(-you commence end game with -the penetrator)).

ROSS 47
How to make ROSS code run faster

14. How to make ROSS code run faster

When you execute a ROSS message transmission in "interpreted" mode,
the transmission is given to the referenced actor, who proceeds to search
through his (and possibly his ancestor's) list of behaviors until one is
found that matches the message. Then the associated code is executed.
This process can entail quite a bit of search, and therefore may be very
slow (compared with function calls). However, the search can often be
reduced or eliminated. To take the simplest case, assume that only the
actor "something" has a behavior matching the pattern "(print your >slot)".
Now in any interpreted ROSS code, each "print your..." message transmission
requires a search. But since the target of the search is the same in all
cases (something's code for "print your..." messages), it would be
efficient to replace each "print your ..." transmission with a direct
pointer (a function call) to something's code. In general, because only a
limited number of behaviors can respond to any transmission, it is
desirable to eliminate the execution time search for the appropriate
behaviors by substituting pointers for transmissions at "compile" time.

By "compiling" ROSS behaviors into LISP code, then compiling the LISP
code into machine-level code, systems that are written in ROSS can be made
to execute quickly. Experience shows that a 5 to 50 fold increase in
execition speed can be expected over an interpreted version. This speed
may not be critical during the development phase of a large simulation, but
can be critical when the simulation has reached a production stage.

14.1. When to compile behaviors

Before learning how to compile behaviors, it is important to know when
to compile them. The compilation of behaviors makes one important
assumption: THE BEHAVIOR THAT WOULD FIELD THE MESSAGE AT EXECUTION TIME,
IF COMPILATION WAS NOT DONE, MUST BE PRESENT IN THE ROSS ENVIRONMENT AT
COMPILE TIME. Otherwise, the functions compiling behaviors would fail to
find the correct pointer to substitute in for the transmission. Once a
behavior is compiled, an equally important constraint is implied: IF THE
BEHAVIOR THAT NORMALLY FIELDS A MESSAGE TRANSMISSION IS CHANGED AFTER THE
TRANSMISSION IS COMPILED, THESE CHANGES WILL NOT BE REFLECTED IN THE
COMPILED CODE. In practical terms, this means that you should consider
compiling actors and their behaviors only when (i) the system you are
building has been debugged and you do not envision substantially adding to
or changing behaviors, and (ii) all of the system actors are in the
compile-time ROSS environment.

U 14.2. How to compile behaviors

It is possible to compile all the behaviors of an actor by typing:

(compile-behaviors '<actor>)

or to compile only the behavior of an actor matching a certain pattern
using:

' . ' . . , .

ROSS -48-
How to make ROSS code run faster

(compile-behavior '<actor> '<pattern>).

Essentially, this causes a lot of ROSS code to be macroexpanded to LISP
code. But you need to be able to keep this new code around on a permanent
basis (write it out to a file) so that it can be submitted to the MACLISP
compiler and later read back in. The easiest way to do this is to compile
by actor-file, not by actor. An actor-file is a .lsp file that contains
all the behaviors for one or more actors (e.g., all of something's
behaviors are in ross-something.lsp). At the beginning of an actor-file
one puts a declaration of the actors to be found in the file. It is of the
form:

(file-actors: <actorl> <actor2> ...).

Actor-files, unlike normal MACLISP files, should be loaded using:

(load-actors '<filename>).

For example "(load-actors 'ross-something)" will load in something. (The
.isp extension is assumed.) Now when you want to compile the actors, you
simply say:

(compils-actors '<filename>)

and to get this compiled code written out to disk now use:

(print-actors '<filename>).

This will cause a file with .obj extension to be created. For example, if
ross-something. lsp contains the ROSS version of something,
ross-something.obj will contain the LISP ("compiled") version. Now you can
submit this .obj version to <maclisp>complr, and expect to get back .fasl
and .unfasl versions. Fasl files represent the compiled versions of the
actors in a ROSS system. The .fasl version of a .lsp file will be loaded
if, at any future time, you say (load 'ross-something) to ROSS. Therefore,
use "load-actors" when you are running your actors in interpreted mode;
use "load" when you are running the faster compiled version.

Here is an abbreviated example session to illustrate the above points:

@ROSS [user gets into ROSS]

NIL
(LOAD-ACTORS 'QSIM) [user loads several actors from

qsim.lsp, then tests and debugs
their behaviors)

(COMPILE-ACTORS 'QSIM) [this causes the message transmissions
in the behaviors of all the objects in
qsim.lsp to be replaced by LISP
function calls]

ROSS -49
How to make ROSS code run faster

(PRINT-ACTORS 'QSIM) [the actor and its compiled behaviors
are written out to qsim.obj]

tC [user <ctrl>-c's out of MACLISP and ROSS
@PUSH and pushes to a new exec]

@<MACLISP>COMPLR [now the user invokes the 'ACLIZ? compiler,
_QSIM.OBJ tells it to compile qsim.obj, finishes,
tc pops back to the superior exec, continues

@POP his ROSS session, and finally loads the
@CON qsim~fasl file that contains his actors
(LOAD 'QSIM) compiled into machine code]

The procedure for compiling actors is quite simple once you've done it
a few times. Anyone wishing more details on the correct format for
actor-files or the structure of .obj versions is invited to look at
<dave.ross>qsim.lsp and <dave.ross>qsim.obj.

i

ROSS -50-
References

* 15. References

Goldberg, A., and A. Kay. "Smalltalk-72 Instruction Manual", SSL 76-6,
Xerox PARC, Palo Alto, 1976.

Hewitt, C. "Viewing Control Structures as Patterns of Message Passing",
Artificial Intelligence, 8, 1977, 323-364.

Ingalls, D. "The SMALLTALK-76 Programming System: Design and
Implementation", Fifth ACM Symposium on Principles of Programming
Languages, 1976.

Kahn, K. M. "Director Guide". AI Memo 482B, Massachusetts Institute of
Technology, Cambridge, 1979.

Klahr, P., D. McArthur, S. Narain, and E. Best, "SWIRL: Simulating
Warfare in the ROSS Language", The Rand Corporation, N-1885-AF,
September, 1982.

Stallman, R. M. "EMACS Manual for TWENEX Users", AI Memo 555,
Massachusetts Institute of Technology, Cambridge, 1981.

Weinreb, D., and D. Moon, "The Lisp Machine Manual", Symbolics, Inc.,
Cambridge, 1981.

4

I

f,

1'

' ,*

